A Hybrid Method based on Discrete Wavelets and Least Squares Support Vector Machines for Short-Term Wind Speed Forecasting

نویسندگان

  • T. Sivanagaraja
  • Anil K. Tatinati
  • K. C. Veluvolu
چکیده

Exponential increase in power consumption leads to the global attention towards pollution free and renewable energy resources. For instance, wind turbines to produce electrical energy thru wind energy. For wind energy domain, wind speed forecasting is of great significance for wind farms design and planning, its operational control, and wind power prediction etc. Due to the impact of several environmental factors, time series of wind speed exhibits high fluctuations, less correlation and stochastic volatility. In this paper, to enhance the wind speed forecasting, a two stage method that relies on discrete wavelet (a trou’s wavelet transform) and least squares support vector machines (LS-SVM) is developed. In the first stage of the method, the time series of wind speed is decomposed into wavelet components by employing a trou’s wavelet. In the later stage, an LS-SVM is trained with the obtained wavelet components as inputs and h-samples ahead data as the target data (output). To identify the optimal initialization for LS-SVM, a grid search is conducted for a wide range of values. The nonlinear mapping obtained with the training data set and optimal initialization is employed to perform forecasting. The forecasting results obtained with the proposed method show better performance as compared to the existing methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Approach for Short-Term Forecasting of Wind Speed

We propose a hybrid method for forecasting the wind speed. The wind speed data is first decomposed into intrinsic mode functions (IMFs) with empirical mode decomposition. Based on the partial autocorrelation factor of the individual IMFs, adaptive methods are then employed for the prediction of IMFs. Least squares-support vector machines are employed for IMFs with weak correlation factor, and a...

متن کامل

Identification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines

In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...

متن کامل

A New Hybrid Algorithm for Short Term Load Forecasting

In restructuring the electric power industry, the load had an important role for market managers and participants when they develop strategies or make decisions to maximize their profit. Therefore, accurate short term load forecasting (STLF) becomes more and more vital for all market participants such as customer or producer in competitive electricity markets. In this paper, a new hybrid algori...

متن کامل

A Hybrid Model for Short-Term Load Forecasting Based on Non- Parametric Error Correction

In this paper, we presented the performance of forecasting model and error correction will affect the accuracy of short-term load forecasting. Least squares support vector machines (LS-SVM) based on improved particle swarm optimization is selected as load forecasting model. Forecasting accuracy and generalization performance of LS-SVM depend on selection of its parameters greatly. Adaptive part...

متن کامل

Short-Term Load Forecasting Based on Wavelet Transform and Least Squares Support Vector Machine Optimized by Improved Cuckoo Search

Due to the electricity market deregulation and integration of renewable resources, electrical load forecasting is becoming increasingly important for the Chinese government in recent years. The electric load cannot be exactly predicted only by a single model, because the short-term electric load is disturbed by several external factors, leading to the characteristics of volatility and instabili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014